
Team Doctor

 1 Background

The health care industry has seen the widespread adoption of information technology as an enabling
technology in recent years. One area of health care with massive potential is using IT to get more
doctors / consultants to review a patient's case history. Team Doctor is a not-for-profit company
owned by twenty (20) major hospitals located throughout North America, Europe and Asia. These
hospitals have decided to make their their specialist consultant resources available to each other at a
nominal cost, in order for all hospitals to provide better care to their patients. Consultants will be able
to remotely review X-rays, MRI scans, a complete patient history including previous prescriptions
and provide feedback to the doctor in charge of the patient on potential avenues of treatment,
alternative treatments that should be considered etc. The 20 hospitals involved can commit to building
Team Doctor as all of their patient care and diagnosis systems have been brought online through
significant investment in IT over the last twenty years. The hospitals have calculated that the Team
Doctor system will improve access to top-level consultants for an average of 78% of cases that
require it, while reducing the cost of access to these specialized resources by 67%. These cost savings
can then be re-invested in improving other parts of the hospital, especially primary care.

 2 Workshop Output

You are the architect for the Team Doctor project. You have been tasked by the hospital's
management committee to lead the team responsible for the design, implementation and ongoing
management of the complete system as a turnkey or complete solution.

After an intensive series of discovery workshops with the in-house business analysts and subject
matter experts you know the following facts:

● Doctors will place requests for assistance into the Team Doctor system, attaching the patient
ID and all relevant supporting documentation / clinical notes;

● The Team Doctor system will place the request for assistance into the work queue for a set of
qualified consultants / peers to review and provide assistance to the requesting doctor;

● There are three key main systems to provide access to – (1) the rich content repository which
contains high-resolution medical images and binary content, (2) the patient record system
which holds a complete patient's medical history and (3) the prescriptions database, which
stores all prescriptions issued to patients;

● All three systems provide a web services interface to read data;
● None of the three systems will be written to – teams of doctors and consultants working

remotely will consume data in read-only mode, reach a consensus and store notes and
recommendations in the Team Doctor system;

● Any recommendations that are implemented will be recorded by the system controlling that
part of the hospital – e.g. X-rays and MRI scans will be loaded into the rich content
repository, prescriptions will be recorded in the prescriptions database etc.;

● All of these systems are accessed by a single, unique patient ID, guaranteed to be unique
across all participating hospitals; and

● The hospitals involved are major trauma centers and also operate in multiple timezones,
therefore the system must be designed with resilience in mind and an availability of 99.99%;

● Patient security is important – doctors will be able to access the system using HTTP over SSL
via the internet, but you should consider what additional measures are warranted to protect
patient data.

Business Domain Model

Use Case Diagrams

Illustration 1: Business Domain Model for the Team Doctor application.

The use case specifications provided are a first pass at the use cases and provide enough detail in
order for you to architect a solution.

Use Case Specification – Post Request

Brief Description

The Post Request use case allows a doctor to post a request for information to the system so that it can
be viewed and responded to by other qualified doctors and consultants.

Basic Flow

1. The doctor creates a new request for information providing additional information if necessary
in the form of notes, or by attaching rich content, patient history and previous prescription
history.

Illustration 2: Primary use cases for the Team Doctor application.

2. The doctor submits the request to the application.
3. The application validates and approves the request and publishes it for response to a set of

qualified personnel registered in the application by placing the request in their work queue.

Use Case Specification – Provide Advice

Brief Description

The Provide Advice use case allows a recognized subject matter expert (doctor or consultant) to
provide advice to a request for assistance.

Basic Flow

1. The subject matter expert (user) logs into the system and reviews the first available request for
assistance in their work queue.
2. The user reviews the request along with all supporting documentation and attachments and
provides some initial advice before submitting the updated request to the application.
3. The application saves the submitted response and notifies the original requester that a response has
been received by generating an update message and placing it in the requester's work queue.

Use Case Specification – Review Advice, Request Clarification

Brief Description

The Review Advice, Request Clarification use case allows the original requester to review advice
provided by a subject matter expert and optionally, to request further clarification on it if necessary.

Basic Flow

1. The original requester (the user) logs into the system and selects an open request from their work
queue in order to review responses received. The system returns the request along with all responses
received from subject matter experts.
2. The user reviews the responses along with all supporting documentation and attachments and
selects one specific response to probe further on.
3. The user constructs their more detailed query, attaching any pertinent information if necessary and
submits the request to the application.
4. The application saves the submitted response and notifies the original responder that a clarification
request has been received by generating an update message and placing it in the responder's work
queue.

Use Case Specification – Respond to Additional Request

Brief Description

The Respond to Additional Request use case allows the original responder to review a clarification
request received and to respond to that request, providing additional information and justification
where appropriate for the original advice.

Basic Flow

1. The original responder (the user) logs into the system and selects an open request from their work
queue. The system returns the request along with all responses received from subject matter experts.

2. The user reviews the clarification request along with all attached supporting documentation and
attachments.
3. The user constructs their more detailed response, attaching any pertinent information if necessary
and submits the response to the application.
4. The application saves the submitted response and notifies the original requestor that a clarification
response has been received by generating an update message and placing it in the requester's work
queue.

 3 Deliverables

This section must remain consistent between assignments.

It is your task to create an architecture and design for the SuD with the given business domain model,
information provided above and requirements in the use cases. The architecture must be built using
the JEE platform. All deliverables will be accepted as HTML only and each diagram must be UML
compliant.

1. Create a class diagram for the SuD. Public method names referenced in other UML diagrams
(e.g. sequence diagrams) should be provided.

2. Create a Component diagram for the SuD showing the components used in the system and
their interaction. Examples of components are EJBs, Servlets, JSPs, major POJOs (Plain Old
Java Objects) and important Managers / Controllers / Design Pattern implementations.

3. Create a Deployment diagram that describes the proposed physical layout of the major tiers of
the SuD.

4. Create either a Sequence or Collaboration diagram for each use case provided.

1. List the top three risks and identify a mitigation strategy for each risk.

5. Listing of any assumptions made during the process of coming up with the architecture and
design.

Your architecture and design will be graded on how well it supports the requirements detailed in this
document and on the clarity of all information provided in both textual and diagrammatic form.

 3.1 Submitting Your Work

Note to the candidate: failure to follow the rules described here will result in an immediate failure and
require a re-submission on your part.

When you have completed your solution, you should have an "index.html" that has your name, i.d., a
link to the class, component and deployment diagram, and a link to each of the sequence/collaboration
diagrams. Build a jar archive that contains all html files. You must build a jar archive; do not send
individual files.

The name of your submission jar archive file MUST be derived from your i.d.. (Note that in the
United States, your i.d. is your 9-digit social security number, e.g. 555443333. Outside the U.S., your
i.d. might be 9 digits, or it might be 2 characters followed by 7 digits, e.g. sp1234567.) Your archive
filename MUST BE scea-AAAAAAAAA.jar, where AAAAAAAAA is your i.d.

 4 Marking

The tentative marking for this beta is described below. The markings will be finalized based on the
results of the beta. You will receive a single score for parts 2 and 3.

Below are the sections of the assignment and points available per section with a minimum score per
section if it is a required section to pass. Minimum score to pass the exam, if passing required
sections, is 114 (tentatively set). If a person fails any of the required sections Component, Class,

Deployment or Question, then it is an automatic failure regardless of the final score. We will only
post a pass or fail. If you fail, we will let you know which sections need improvement in order to pass
so you do not have to focus on all sections with your re-submission.

Points Minimum Pass

Component Diagram 40 26

Class Diagram 40 26

Deployment Diagram 24 17

Interaction Diagrams 16 0

Risk & Mitigation List 16 0

Part 3 Short Answer 24 17

Total 160

	Team Doctor
	 3.1 Submitting Your Work

